Experiments Beyond the Tonne-Scale: New Technologies

An Instrumentation Perspective

A. Dragone

(dragone@slac.stanford.edu)

What questions we need to answer?

Needs

Sensitivity (E, s, t)

- Large channel counts = interconnections = points of failure
 - Can we aggregate data inside the vessels?
 - Can we build radiopure readouts?
 - Can we keep power consumption contained and operate in a cold environment?
- Lower noise / high precision timing
 - What are the implications of increasing dynamic range?
 - Can we increase the power budget for front-ends?
- Multi-sensing approaches / Active background rejection techniques
 - Can we leverage them to extract information in real time?
 - Triggered readouts

A few points for discussion

- Application Specific Integrated Circuits have enabled high channel count and data aggregation in large experiments
 - IC technology are relatively radiopure as bare die, but we need data
 - We know how to design at cold temperatures, but we need models
- System-on-chip architectures are critical
 - Self-consistent designs with minimal I/Os
 - Integrated capless LDOs, Low power signal processing chains, high speed serializers
- Lower noise / precision timing / high dynamic range (ADC bits) can be achieved
 - Trade-off with power
 - Trade-off with bandwidth (thus sampling frequency and the possibility to resolve more features in the pulse shape for events discrimination
- Triggered acquisitions could solve power consumption issues, reduce dramatically interconnections, allowing to allocate more power in the front-ends to increase sensitivity and higher sampling rates around triggering events.